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1 Introduction

[Charm quark system]
Charm quark system is charming for physicists.

• Charm quark mass and Cabibbo-Kobayashi-Maskawa(CKM)matrix elements
are fundamental parameters of the standard model, which are hard to be
determined by experiments.
← In addition, these parameters are also needed as inputs for a new theory
beyond the standard model.

• Exotic hadrons such as Z+(4430), made of udcc̄ !?, have been observed.

• Charmonium is a good probe for a hot and dense QCD matter.

♦ Charm quark system is hard to be studied analytically because of
mcharm ∼ ΛQCD . Effective theories are not effective. Non-perturbative
method is needed.
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[Model and lattice QCD]
So far, many models have been used for study of charm quark system.

• Correctness of a model must be always checked, because the result is
model-dependent.
← Experiment gives a check. In addition, precise lattice QCD calcu-
lations can judge a model now.

Model Lattice

Result Model-dependent Model-independent

Input Many parameters αs,mquark (or hadron masses)

αs,mquark Artificial QCD running

Heavy quark 1/M expansion Full order

Cost Low High
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[Recent development of lattice QCD]

• Thanks to recent development of computers and algorithms,
realistic lattice QCD simulations can be performed.
→ Pion mass in lattice simulations reaches the physical value.

Year Machine Speed [TFlops] mπ[MeV]

1996-2005 CP-PACS 0.6 700

2006- PACS-CS 14 160

2008- T2K(Tokyo,Tsukuba,Kyoto) 235 135

Experiment 135
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[Light hadron spectrum]
Two lattice groups have reached the physical point of dynamical ud, s quarks.
Light hadron spectrum is reproduced in 5% accuracy. PACS-CS,2009; BMW,2010

→ Based on this result, we move on to the heavy quark system.

• For unstable hadrons such as ρ, more detailed analysis using Lüscher’s formula is needed.

• MILC has started Nf = 2 + 1 + 1 lattice QCD simulations around the physical point.
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2 Simulation setup

We perform Nf = 2 + 1 full QCD simulation(including dynamical up,down
and strange quarks) for the charm quark system on the physical point.

• Action : Iwasaki gauge + O(a) improved Wilson fermion for light sea quarks
+ relativistic heavy fermion for valence charm quark

• Lattice size : 323 × 64 (L = 3 fm, a−1 = 2.2 GeV (β = 1.90))

• Sea and valence quark masses : on the physical point (i.e. mπ = 135 MeV)

• Inputs : mπ ,mK ,mΩ for mud,ms,a; m(1S) ≡ 1

4
(mηc + 3mJ/ψ) for mcharm

mMS
ud (µ = 2GeV)[MeV] mMS

s (µ = 2GeV)[MeV] Nconf (MD time)
3 93 80 (2000)
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[Operators]

• We use the relativistic operators, because the relativistic heavy quark formu-
lation is employed.

• We employ the two quark operators for mesons.
← Only the quantum number is meaningful for the lattice field theory. Two-
and four-quark operators give the same central value.

[Operators for mesons]

Mfg
Γ

(x) = q̄f (x)Γqg(x),

Γ = I, γ5, γµ, iγµγ5, i[γµ, γν ]/2,

f, g : labels for quark flavors.

[Operators for baryons with J = 1/2]

Bfghα (x) = ǫabc((qaf (x))
TCγ5q

b
g(x))q

c
hα(x),

C = γ4γ2, α = 1, 2.
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3 Results

3.1 Charmonium spectrum

• Since m(1S) ≡ 1

4
(mηc + 3mJ/ψ) is used as an input for mcharm,

differences from m(1S) are predictions.

• Our results agree with experiments except for the hyperfine splitting.

• Our hyperfine splitting deviates from BES III experiment(2011) by 3σ(4%).

→ Our error does not include the following systematic errors: scaling violations,

dynamical charm quark effects, disconnected loop contributions, QED effects.
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3.2 Charm-strange spectrum

• Our calculation reproduces the charm-strange spectrum in 2σ level.

• Contaminations to mD∗s0
,mDs1

from DK scattering states can be considerably large,

which have not been included yet.

• (D∗s0, Ds1 decays are prohibited in our Nf = 2 + 1 lattice QCD.)
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[Comparison of lattice QCD with non-lattice results]

• Our lattice QCD result using two-quark interpolating operators reproduces
the experimental value. No need for multi-quark picture.

• Many models are not good for D∗

s0.
← The standard potential model by Godfrey et al, 1983 fails to reproduce D∗s0 masses.

• A tetra-quark model by Cheng et al,2003 can fit to experiment.

• A model by Matsuki et al, 1997;2006 is close to experiment.
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Lattice(This work)
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Model(Matsuki et al, 1997;2006)
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3.3 Charm-ud spectrum

• D meson mass spectrums are reproduced well.

• (D∗ decay is prohibited on our lattice of L = 3 fm with a−1 = 2.2 GeV.)

• (For unstable particles, D0, D1, more detailed analysis using Lüscher’s formula is needed.)
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3.4 Charm quark mass

• Charm quark mass is determined from the axial Ward-Takahashi identity.

• Our result is consistent with other lattice and continuum calculations.

• Our systematic error is still large. The main source of our error is the non-perturbative
renormalization factors.
(The renormalization factor is calculated non-perturbatively at the massless point. The mass
dependent part is calculated perturbatively.)

• (Charm quark mass is renormalized at µ = 1/a, and evolved to µ = mMS
charm using Nf = 4

four-loop beta function.)
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3.5 Decay constants and CKM matrix elements

• Our fDs agrees with the experimental value and other lattice QCD results.

• CKM matrix elements are extracted from our mass and pseudoscalar decay
constant of charmed-strange meson combined with experimental values for
the leptonic decay width of charmed-strange mesons.
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[Decay constants and CKM matrix elements(continued)]

• Our fD is consistent with experiments and other results in 2σ level.
← Our fD is 2.2σ higher than experiments, and 2.4σ higher than HPQCD and UKQCD value.

• Continuum extrapolation of our fD is needed for a definite comparison.

• |Vcd| is consistent with the other result, because the experimental error of the leptonic decay

width is large.
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3.6 Charmed baryon

• Our results agree with experiments in 2σ level, except for Ξcc.

♦ Only SELEX(2002,2005) found Ξcc = 3519 [MeV].

♦ BABAR, BELLE and FOCUS found no evidence for Ξcc.
→ Ξcc has been omitted from PDG.
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[Comparison of lattice QCD with non-lattice results]
Typical model calculations are compared with our lattice result.

• For Ξcc, many models are close to our result.

• Many models and our result give Ξcc mass higher than SELEX experiment
by around 100 MeV.
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4 Summary

We performed Nf = 2 + 1 full QCD simulation of the charm quark system on the
physical point at a−1 = 2.2 GeV.

• Our calculation reproduces meson mass spectrums of the ground states
except for hyperfine splittings.

♦ Our data of the charmonium hyperfine splitting is 3σ smaller than experiments.
← Possible origins of the discrepancy are O(a) effects in our relativistic heavy quark
action, dynamical charm quark effects, disconnected loop contributions, QED effects.

• Our results for charm quark mass and CKM matrix elements are presented.

• Our calculation reproduces charmed baryon spectrum except for Ξcc.

♦ Our data of Ξcc shows a significant deviation from the experimental value of SELEX
group.
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[Future works]

• We are going to a finer lattice (a−1 = 3 GeV) to take a continuum limit.

• Excited states of charmonium such as X,Y, Z, separating DD̄ contamination.

[New computers]

Machine Speed [PFlops]
K-computer@RIKEN,AICS 11

BlueGene/Q@KEK 1.3
HA-PACS@Univ. of Tsukuba 0.8

PACS-CS@Univ. of Tsukuba 0.01
CP-PACS@Univ. of Tsukuba 0.001
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Appendix
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