Charm quark physics from lattice QCD

arXiv: 1104.4600, 1111.0142

Yusuke Namekawa(Univ. of Tsukuba) for the PACS-CS collaboration

S.Aoki, K-I.Ishikawa, N.Ishizuka, T.Izubuchi, K.Kanaya, Y.Kuramashi, Y.Nakamura, Y.Namekawa,

M.Okawa, Y.Taniguchi, A.Ukawa, N.Ukita, T.Yamazaki, T.Yoshie

Contents

Sim	ulation setup
Res	sults
3.1	Charmonium spectrum
3.2	Charm-strange spectrum
3.3	Charm-ud spectrum
3.4	Charm quark mass
3.5	Decay constants and CKM matrix elements
3.6	Charmed baryon

4 Summary

18

1 <u>Introduction</u>

[Charm quark system]

Charm quark system is charming for physicists.

- Charm quark mass and Cabibbo-Kobayashi-Maskawa(CKM) matrix elements are fundamental parameters of the standard model, which are hard to be determined by experiments.
 - \leftarrow In addition, these parameters are also needed as inputs for a new theory beyond the standard model.
- Exotic hadrons such as $Z^+(4430)$, made of $udc\bar{c}$!?, have been observed.
- Charmonium is a good probe for a hot and dense QCD matter.
 - \diamond Charm quark system is hard to be studied analytically because of $m_{charm} \sim \Lambda_{QCD}$. Effective theories are not effective. Non-perturbative method is needed.

[Model and lattice QCD]

So far, many models have been used for study of charm quark system.

• Correctness of a model must be always checked, because the result is model-dependent.

 \leftarrow Experiment gives a check. In addition, precise lattice QCD calculations can judge a model now.

	Model	Lattice
Result	Model-dependent	Model-independent
Input	Many parameters	$lpha_s, m_{quark}$ (or hadron masses)
α_s, m_{quark}	Artificial	QCD running
Heavy quark	1/M expansion	Full order
Cost	Low	High

[Recent development of lattice QCD]

- Thanks to recent development of computers and algorithms, realistic lattice QCD simulations can be performed.
 - \rightarrow Pion mass in lattice simulations reaches the physical value.

Year	Machine	Speed [TFlops]	$m_{\pi}[\text{MeV}]$
1996-2005	CP-PACS	0.6	700
2006-	PACS-CS	14	160
2008-	T2K(Tokyo,Tsukuba,Kyoto)	235	135
	Experiment		135

[Light hadron spectrum]

Two lattice groups have reached the physical point of dynamical ud, s quarks. Light hadron spectrum is reproduced in 5% accuracy. PACS-CS,2009; BMW,2010 \rightarrow Based on this result, we move on to the heavy quark system.

- For unstable hadrons such as ρ , more detailed analysis using Lüscher's formula is needed.
- MILC has started $N_f = 2 + 1 + 1$ lattice QCD simulations around the physical point.

2 Simulation setup

We perform $N_f = 2 + 1$ full QCD simulation(including dynamical up,down and strange quarks) for the charm quark system on the physical point.

- Action : Iwasaki gauge + O(a) improved Wilson fermion for light sea quarks + relativistic heavy fermion for valence charm quark
- Lattice size : $32^3 \times 64 \ (L = 3 \text{ fm}, a^{-1} = 2.2 \text{ GeV} \ (\beta = 1.90))$
- Sea and valence quark masses : on the physical point (i.e. $m_{\pi} = 135 \text{ MeV}$)
- Inputs : m_{π}, m_K, m_{Ω} for $m_{ud}, m_s, a; m(1S) \equiv \frac{1}{4}(m_{\eta_c} + 3m_{J/\psi})$ for m_{charm}

$m_{ud}^{\overline{\mathrm{MS}}}(\mu = 2\mathrm{GeV})[\mathrm{MeV}]$	$m_s^{\overline{\mathrm{MS}}}(\mu = 2\mathrm{GeV})[\mathrm{MeV}]$	N_{conf} (MD time)
3	93	80(2000)

[Operators]

- We use the relativistic operators, because the relativistic heavy quark formulation is employed.
- We employ the two quark operators for mesons.
 ← Only the quantum number is meaningful for the lattice field theory. Twoand four-quark operators give the same central value.

[Operators for mesons]

$$M_{\Gamma}^{fg}(x) = \bar{q}_{f}(x)\Gamma q_{g}(x),$$

$$\Gamma = I, \gamma_{5}, \gamma_{\mu}, i\gamma_{\mu}\gamma_{5}, i[\gamma_{\mu}, \gamma_{\nu}]/2,$$

$$f, g : \text{ labels for quark flavors.}$$

[Operators for baryons with J = 1/2]

$$B^{fgh}_{\alpha}(x) = \epsilon^{abc} ((q^a_f(x))^T C \gamma_5 q^b_g(x)) q^c_{h\alpha}(x),$$
$$C = \gamma_4 \gamma_2, \alpha = 1, 2.$$

3 <u>Results</u>

3.1 Charmonium spectrum

- Since $m(1S) \equiv \frac{1}{4}(m_{\eta_c} + 3m_{J/\psi})$ is used as an input for m_{charm} , differences from m(1S) are predictions.
- Our results agree with experiments except for the hyperfine splitting.
- Our hyperfine splitting deviates from BES III experiment (2011) by $3\sigma(4\%)$.

 \rightarrow Our error does not include the following systematic errors: scaling violations,

dynamical charm quark effects, disconnected loop contributions, QED effects.

3.2 Charm-strange spectrum

- Our calculation reproduces the charm-strange spectrum in 2σ level.
- Contaminations to $m_{D_{s0}^*}$, $m_{D_{s1}}$ from DK scattering states can be considerably large, which have not been included yet.
- $(D_{s0}^*, D_{s1} \text{ decays are prohibited in our } N_f = 2 + 1 \text{ lattice QCD.})$

[Comparison of lattice QCD with non-lattice results]

- Our lattice QCD result using two-quark interpolating operators reproduces the experimental value. No need for multi-quark picture.
- Many models are not good for D_{s0}^* .
 - \leftarrow The standard potential model by Godfrey et al, 1983 fails to reproduce D_{s0}^{*} masses.
- A tetra-quark model by Cheng et al,2003 can fit to experiment.
- A model by Matsuki et al, 1997;2006 is close to experiment.

3.3 Charm-ud spectrum

- D meson mass spectrums are reproduced well.
- $(D^* \text{ decay is prohibited on our lattice of } L = 3 \text{ fm with } a^{-1} = 2.2 \text{ GeV.})$
- (For unstable particles, D_0 , D_1 , more detailed analysis using Lüscher's formula is needed.)

3.4 Charm quark mass

- Charm quark mass is determined from the axial Ward-Takahashi identity.
- Our result is consistent with other lattice and continuum calculations.
- Our systematic error is still large. The main source of our error is the non-perturbative renormalization factors.
 (The renormalization factor is calculated non-perturbatively at the massless point. The mass dependent part is calculated perturbatively.)
- (Charm quark mass is renormalized at $\mu = 1/a$, and evolved to $\mu = m_{charm}^{\overline{\text{MS}}}$ using $N_f = 4$ four-loop beta function.)

- 13 / 19 -

3.5 Decay constants and CKM matrix elements

- Our f_{D_s} agrees with the experimental value and other lattice QCD results.
- CKM matrix elements are extracted from our mass and pseudoscalar decay constant of charmed-strange meson combined with experimental values for the leptonic decay width of charmed-strange mesons.

$$\Gamma(D_s \to l\nu) = \frac{G_F^2}{8\pi} m_l^2 m_{D_s} f_{D_s}^2 \left(1 - \frac{m_l^2}{m_{D_s}^2}\right)^2 |V_{cs}|^2$$

[Decay constants and CKM matrix elements(continued)]

- Our f_D is consistent with experiments and other results in 2σ level. \leftarrow Our f_D is 2.2 σ higher than experiments, and 2.4 σ higher than HPQCD and UKQCD value.
- Continuum extrapolation of our f_D is needed for a definite comparison.
- $|V_{cd}|$ is consistent with the other result, because the experimental error of the leptonic decay width is large.

3.6 Charmed baryon

• Our results agree with experiments in 2σ level, except for Ξ_{cc} .

 \diamond Only SELEX(2002,2005) found $\Xi_{cc} = 3519$ [MeV].

♦ BABAR, BELLE and FOCUS found no evidence for Ξ_{cc} . → Ξ_{cc} has been omitted from PDG.

[Comparison of lattice QCD with non-lattice results] Typical model calculations are compared with our lattice result.

- For Ξ_{cc} , many models are close to our result.
- Many models and our result give Ξ_{cc} mass higher than SELEX experiment by around 100 MeV.

4 Summary

We performed $N_f = 2 + 1$ full QCD simulation of the charm quark system on the physical point at $a^{-1} = 2.2$ GeV.

- Our calculation reproduces meson mass spectrums of the ground states except for hyperfine splittings.
 - \diamond Our data of the charmonium hyperfine splitting is 3σ smaller than experiments. \leftarrow Possible origins of the discrepancy are O(a) effects in our relativistic heavy quark action, dynamical charm quark effects, disconnected loop contributions, QED effects.
- Our results for charm quark mass and CKM matrix elements are presented.
- Our calculation reproduces charmed baryon spectrum except for Ξ_{cc} .
 - $\diamond~$ Our data of Ξ_{cc} shows a significant deviation from the experimental value of SELEX group.

[Future works]

- We are going to a finer lattice $(a^{-1} = 3 \text{ GeV})$ to take a continuum limit.
- Excited states of charmonium such as X, Y, Z, separating $D\overline{D}$ contamination.

[New computers]

Machine	Speed [PFlops]
K-computer@RIKEN,AICS	11
BlueGene/Q@KEK	1.3
HA-PACS@Univ. of Tsukuba	0.8
PACS-CS@Univ. of Tsukuba	0.01
CP-PACS@Univ. of Tsukuba	0.001

